Stabilization techniques and a posteriori error estimates for the obstacle problem
نویسندگان
چکیده
منابع مشابه
Stabilization techniques and a posteriori error estimates for the obstacle problem
This work deals with a posteriori error estimates for the obstacle problem. Deriving an estimator on the basis of the variational inequality with respect to the primal variable, an inconsistent one is obtained. To achieve consistency, this problem is treated by a Lagrange formalism, which transfers the variational inequality into a saddle point problem. Different techniques to ensure the stabil...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملVerification of functional a posteriori error estimates for obstacle problem in 2D
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements o...
متن کاملVerification of functional a posteriori error estimates for obstacle problem in 1D
We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above ...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Sciences
سال: 2013
ISSN: 1314-7552
DOI: 10.12988/ams.2013.39504